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Abstract. We consider the process e+e− → χ̃+
i χ̃−

j at a linear collider with transverse e± beam polarization.
We investigate the influence of the CP phases on azimuthal asymmetries in e+e− → χ̃+

i χ̃−
j with subsequent

two-body decays χ̃−
j → ν̃��

− and χ̃−
j → W −χ̃0

1. We show that triple product correlations involving the
transverse e± beam polarization vanish if at least one subsequent chargino decay is not observed. We
derive this result within the minimal supersymmetric standard model (MSSM) with complex parameters;
however, it holds also in the general MSSM with SUSY flavor violation.

1 Introduction

Supersymmetry (SUSY) is at present the most studied ex-
tension of the standard model (SM) [1]. Some of the SUSY
parameters may be complex and are potential new sources
of CP -violation [2,3]. In the chargino sector of the mini-
mal supersymmetric standard model (MSSM) the higgsino
mass parameter µ can be complex, while the SU(2) gaug-
ino mass parameter M2 can be chosen real by redefining
the fields. In the neutralino sector of the MSSM also the
gaugino mass parameter M1 can be complex. The precise
determination of the underlying SUSY parameters will be
one of the main goals of a future e+e− linear collider (LC)
with high luminosity [4]. The phases ϕµ, ϕM1 will give rise
to CP -odd observables which may also be measured in fu-
ture collider experiments.

The study of chargino production

e+e− → χ̃+
i χ̃

−
j , i, j = 1, 2 , (1)

will play an important role at the LC. This process has
been studied quite often in the literature [5–7]. In [6] a
method has been developed to determine the underlying
parameters M2, |µ|, tanβ, including cosϕµ, by measure-
ments of the chargino masses and cross sections. The for-
mulae for the cross section of (1) including longitudinal
and transverse beam polarizations have also been given
and azimuthal asymmetries have been proposed in [7,8].

In principle experiments with transverse e± beam po-
larization may offer the possibility of precision studies of
the effects of CP -violation and new physics. For example,
it has been shown that in the reactions e+e− → W+W−
[9], e+e− → f f̄ [10] and e+e− → t t̄ [11] transverse e±
beam polarization is indeed very helpful to disentangle ef-
fects of new physics. It is, therefore, tempting to study the
potential of transverse beam polarization for measuring

CP -sensitive observables also in chargino production (1).
Triple products give rise to T -odd observables which may
be useful to measure the CP phases involved. When only
the cross sections of (1) are measured, summed over the
polarizations of the produced charginos, one may try the
following triple products involving the transverse beam
polarization:

O1
T = (pe × pχ̃) · t± , O2

T = (t+ × t−) · pχ , (2)

where t− (t+) is the 3-vector of the transverse polarization
of the e− (e+), and pe and pχ̃ are the momentum vectors
of e− (or e+) and χ̃±

i . The leading contribution (at tree-
level) to such a term in the matrix element would be solely
due to CP -violation. However, from the formulae given in
[7] it can be seen that terms involving the triple products
O1,2

T vanish if only chargino production cross sections are
measured. This follows also from the general analysis in
[11] and [12]. As a next step one may try to use triple
products which involve also the subsequent decay of one
of the two charginos. For definiteness one may consider
the two-body decays

χ̃−
j → ν̃��

− (3)

and
χ̃−

j → W−χ̃0
1 . (4)

Then the momentum vector of � = e, µ, τ or the W bo-
son (if W decays hadronically) may be used to study the
following triple products:

O3
T = (pe × p�,W ) · t± , O4

T = (t+ × t−) · p�,W . (5)

Possible T -odd observables based on the triple products
in (2) and (5) would be

〈Oi
T〉 , 〈sgn(Oi

T)〉 , i = 1, . . . , 4 . (6)
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However, as we will show below also the T -odd observables
(6) vanish in Born approximation and neglecting terms
proportional to the electron mass.

In the present paper we examine again the triple prod-
uct correlations (2) and (5). We give a further argument
why they have to vanish. In order to make use of the trans-
verse beam polarization in chargino production we define
the azimuthal asymmetries for the cases:
(i) azimuthal distribution of χ̃−

j (when the direction of
flight of the charginos can be reconstructed);
(ii) azimuthal distribution of the decay product in the
decays (3) or (4). As we will demonstrate, the azimuthal
asymmetry, though CP -even, may serve as a good observ-
able to study the effects of CP phases.

This paper is organized as follows. In Sect. 2 we present
the formulae for the cross section of (1) with transverse
beam polarization and the decays (3) and (4). In Sect. 3
we argue why the T -odd observables in (6) vanish if only
one of the subsequent chargino decays is considered. We
define in Sect. 4 the azimuthal asymmetries and present
our numerical results. Section 5 contains our conclusions.

2 Cross section

The Feynman diagrams contributing to the process (1) are
given in Fig. 1. The relevant parts of the interaction La-
grangian which contribute to the process e+e− → χ̃+

i χ̃
−
j

and the subsequent two-body decays χ̃−
j → ν̃��

− and
χ̃−

j → W−χ̃0
1 are given by [1]

LZe−e+ = − g

cosΘW
Zµψ̄eγ

µ(LePL +RePR)ψe , (7)

LZχ̃+χ̃− =
g

cosΘW
Zµχ̃

+
i γ

µ(O′L
ij PL +O′R

ij PR)χ̃+
j , (8)

L�ν̃χ̃+ = −gV ∗
j1χ̃

+C
j PL�ν̃

∗ + h.c. , (9)

LW −χ̃+χ̃0 = gW−
µ χ̃

0
kγ

µ(OL
kjPL +OR

kjPR)χ̃+
j + h.c. ,

(10)

with

O′L
ij = −Vi1V

∗
j1 − 1

2
Vi2V

∗
j2 + δij sin2ΘW , (11)

O′R
ij = −U∗

i1Uj1 − 1
2
U∗

i2Uj2 + δij sin2ΘW , (12)

and

OL
kj = − 1√

2
Nk4V

∗
j2 +Nk2V

∗
j1 ,

OR
kj =

1√
2
N∗

k3Uj2 +N∗
k2Uj1 , (13)

where Le = −1/2 + sin2Θ,Re = sin2Θ, PL,R = 1/2(1 ∓
γ5), g is the weak coupling constant, e = g sinΘW and
ΘW is the Weinberg angle. The unitary 2 × 2 mixing ma-
trices U and V diagonalize the chargino mass matrix MC ,
U∗MCV

−1 = diag(mχ1 ,mχ2). Nij is the complex uni-
tary 4×4 matrix which diagonalizes the neutral gaugino–
higgsino mass matrix Yαβ , N∗

iαYαβN
∗
kβ = mχ0

i
δik, in the

basis (B̃, W̃ 3, H̃0
1 , H̃

0
2 ) [1].

For the calculation of the amplitude squared of the
process (1) with subsequent decays (3) and (4), we use
the spin-density matrix formalism [13,14]. The amplitude
squared (without summing over the polarization of the
charginos) can be written in the following way:

ρ
λiλ

′
iλjλ′

j

P = δλiλ′
i
δλjλ′

j
P + δλjλ′

j

∑
a

σa
λiλ′

i
Σa

+ δλiλ′
i

∑
b

σb
λjλ′

j
Σb

+
∑
ab

σa
λiλ′

i
σb

λjλ′
j
Σab , (14)

where the coefficient P represents the part of the ampli-
tude squared which is independent of the polarization of
the χ̃±’s, and Σa and Σb contain the parts which depend
on the polarization of χ̃+

i and χ̃−
j , respectively. Finally

Σab contains the part which depends on the polarization
of both χ̃±’s. In (14) σa,b (a, b = 1, 2, 3) denote the Pauli
matrices and λi, λ

′
i (λj , λ

′
j) are the helicity indices of χ̃+

i

(χ̃−
j ).
In the treatment of beam polarizations we use the gen-

eral parametrization which, in the limit of vanishing elec-
tron mass, me → 0, is given by

lim
me→0

1
2
(1 + γ5 �se−)(�p1 +me)

=
1
2
(1 + PLγ5 + γ5PT � t−) �p1 (15)

and

lim
me→0

1
2
(1 + γ5 �se+)(�p2 −me)

=
1
2
(1 − P̄Lγ5 + γ5P̄T � t+) �p2 , (16)

Fig. 1. Feynman diagrams for e+e− →
χ̃+

i χ̃−
j
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where se− (se+) is the polarization vector and t− (t+)
the transverse beam polarization 4-vector of e− (e+), re-
spectively. In (15) (or (16)) PL (P̄L) [−1 ≤ PL, P̄L ≤ 1]
denotes the degree of the longitudinal polarization of e−
(e+) and PT (P̄T) [0 ≤ PT, P̄T ≤ 1] denotes the degree of
transverse polarization of e− (e+), statisfying P 2

L+P 2
T ≤ 1

and P̄ 2
L + P̄ 2

T ≤ 1. The P terms are given by

P = P (γγ) + P (γν̃) + P (γZ)
+P (ZZ) + P (Zν̃) + P (ν̃ν̃) , (17)

where in the following we only list the part which involves
the transverse beam polarization (the terms not depen-
dent on the beam polarization or the terms which depend
on the longitudinal beam polarization can be found in
[15]):

P (γγ) = PTP̄T 2δije4|∆(γ)|2(−r1) , (18)

P (γν̃) = −PTP̄T
1
2
δije

2g2∆(γ)∆(ν̃)∗

×Re{V ∗
i1Vj1(r1 − r2)} , (19)

P (γZ) = PTP̄T e2δij
g2

cosΘ2
W

∆(γ)∆(Z)∗

×Re{(O′R
ij −O′L

ij )

×[(Le +Re)(−r1) + (Le −Re)r2]} , (20)

P (ZZ) = PTP̄T
g4

cosΘ4
W

|∆(Z)|2LeRe

× (|O′L
ij |2 + |O′R

ij |2)(−r1) , (21)

P (Zν̃) = −PTP̄T
1
2

g4

cosΘ2
W

∆(Z)∆(ν̃)∗Re

×Re{V ∗
i1Vj1O

′L
ij (r1 − r2)} , (22)

P (ν̃ν̃) = 0 , (23)

where we have introduced the shorthand notation

r1 = [(t−p4)(t+p3) + (t−p3)(t+p4)](p1p2)
+[(p1p4)(p2p3) + (p1p3)(p2p4)
−(p1p2)(p3p4)](t−t+) , (24)

r2 = i εµνρσ[t+µ p1νp2ρp4σ(t−p3)

+t−µ p1νp2ρp3σ(t+p4) + t−µ t
+
ν p2ρp4σ(p1p3)

+t−µ t
+
ν p1ρp3σ(p2p4)] , (25)

where ∆(Z) = i/(s − m2
Z), ∆(ν̃) = i/(t − m2

ν̃), with s =
(p1 + p2)2, t = (p1 − p4)2, mν̃ (mZ) is the mass of the
sneutrino (Z boson) and ε0123 = 1. For the evaluation of
the traces we have used the FeynCalc package [16]. Note
that only terms bilinearly dependent on the transverse
beam polarizations appear forme → 0, since the couplings
to e+e− are vector- or axial-vector-like [12,17,18] (for the
ν̃ exchange the coupling to e+e− can be brought to that
form via Fierz identities). The cross section for the process
(1) is given by

dσ =
1

2(2π)2
q

s3/2 P d cos θ dφ , (26)

where P contains the terms for arbitrary beam polariza-
tion and q is the momentum of the χ̃±’s.

Now we consider the Σa,b terms, which means that
we take into account the polarization (or equivalently the
decay) of one of the two produced charginos. The Σa term
is given by

Σa = Σa(γγ) +Σa(γν̃) +Σa(γZ) +Σa(ZZ)
+Σa(Zν̃) +Σa(ν̃ν̃) , (27)

where in the following we again list only the part which
involves the transverse beam polarization (for the terms
independent of the beam polarization or the terms which
depend on the longitudinal beam polarization see [15]):

Σa(γγ) = 0 , (28)

Σa(γν̃) = −PTP̄T
1
2
δije

2g2∆(γ)∆(ν̃)∗ (29)

×Re{V ∗
i1Vj1(ra

1 + ra
2)} ,

Σa(γZ) = PTP̄T e2δij
g2

cosΘ2
W

∆(γ)∆(Z)∗

×Re{(O′R
ij −O′L

ij )[(Le +Re)ra
1

+(Le −Re)ra
2 ]} , (30)

Σa(ZZ) = PTP̄T
g4

cos4ΘW

×|∆(Z)|2LeRe(|O′R
ij |2 − |O′L

ij |2)ra
1 , (31)

Σa(Zν̃) = −PTP̄T
g4

2 cos2ΘW
∆(Z)∆(ν̃)∗Re

×Re{V ∗
i1Vj1O

′L
ij (ra

1 + ra
2)} , (32)

Σa(ν̃ν̃) = 0 , (33)

with

ra
1 = −mχi

{[(t+p4)(sat−) + (sat+)(t−p4)](p1p2)
+[(sap2)(p1p4) + (sap1)(p2p4)
−(sap4)(p1p2)](t−t+)} (34)

ra
2 = i εµνρσ mχi [t

+
µ p1νp2ρp4σ(sat−)

+t−µ t
+
ν p2ρp4σ(sap1) − sa

µt
−
ν p1ρp2σ(t+p4)

−sa
µt

−
ν t

+
ρ p1σ(p2p4)] , (35)

where the polarization basis 4-vectors sa (a = 1, 2, 3) for
χ̃+

i fulfill the orthogonality relations sa · sc = −δac and
sa · p3 = 0. Σb is obtained by making the replacements
sa → −sb,mχi → mχj , p4 → p3 in (24) and (34).

The spin-density matrices for the decays χ̃−
j → ν̃��

−

(3) and χ̃−
j → χ̃0

1W
− (4) can be written as

(ρD)λ′
jλj

= Dδλ′
jλj

+Σa
Dσ

a
λ′

jλj
, (36)

where the expansion coefficients are

D(ν̃ �) =
g2

2
|Vj1|2(m2

χj
−m2

ν̃) , (37)

Σb
D(ν̃ �) = g2|Vj1|2mχj (s

b · p�) , (38)
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for the decay (3) and

D(χ̃0
1 W ) = g2(|OL

1j |2 + |OR
1j |2)

×
[

(m2
χ0

1
+m2

χj
)m2

W + (m2
χ0

1
−m2

χj
)2 − 2m4

W

2m2
W

]

− 6g2Re(OL
1j

∗
OR

1j)mχ0
1
mχj , (39)

Σb
D(χ̃0

1 W ) = g2(|OL
1j |2 − |OR

1j |2)mχj

×
[
m2

χj
−m2

χ0
1
− 2m2

W

m2
W

]
(sb · pW ) , (40)

for the decay (4). Using (14) and summing over the po-
larization of χ̃+

i , whose decay is not considered, finally
gives the cross section for e+e− → χ̃+

i χ̃
−
j → χ̃+

i �
−ν̃�

(χ̃+
i W

−χ̃0
1):

dσ =
2
s

[PD +Σa
PΣ

a
D] |∆(χ̃−

j )|2dLips , (41)

where P and Σa
P involve the terms for arbitrary beam

polarization. The Lorentz invariant phase space element
dLips is given in Appendix B for the two decays (3) and
(4).

3 Triple product correlations
with transverse beam polarization

In the following we argue why T -odd observables as in (6)
based on triple product correlations of the sort as in (2)
and in (5) are expected to vanish at tree-level if at least
one subsequent chargino decay is not observed.

We discuss first the T -odd observables 〈O1,2
T 〉 based on

the triple product correlations in (2), which involve only
the production cross section σ(e+e− → χ̃+

i χ̃
−
j ) and the

quantity P , (17). First we note that these triple products
are contained only in the kinematic quantity r2 in (25).
We note further that the two produced charginos should
be different mass eigenstates, i.e. i �= j; otherwise the
prefactor V ∗

i1Vj1O
′L
ij in (22) would be real. Then the γ

exchange does not contribute. However, it can be shown
that also for i �= j the prefactor V ∗

i1Vj1O
′L
ij in (22) is real.

In fact, this can be verified by a short calculation using
the parametrization for V [6,19]

V =


 cos θ2 e−iφ2 sin θ2

−eiφ2 sin θ2 cos θ2


 . (42)

This result can also be deduced from the formulae given
in [7]. The reason behind lies in the CP property of the
quantity r2. We adopt the method of [12] to examine the
behavior of r2 under a CP transfomation. We first choose
the transverse polarizations of e− and e+ either parallel or
anti-parallel to each other (t− = t+ or t− = −t+). Then
the last two terms in (25) are identical zero. Applying a
CP transformation (in the CM system) to the first two
terms of r2 as follows:

t+(p1 × p4)(t− · p3)
C−→ t−(p2 × p4)(t+ · p3)

P−→ −t−(p2 × p4)(t+ · p3), (43)

one finds that r2 is CP -even (here we sum over the charges
of the final charginos so that p3

C−→ p3 and p4
C−→ p4).

On the other hand r2 is T -odd, where T stands for the
so-called naive time reversal (i.e. all momentum and po-
larization vectors are reversed without interchanging ini-
tial and final state). Therefore, the prefactor of r2 in (25)
vanishes as a consequence of CPT . The same conclusion
can be derived for the case that the transverse polariza-
tions of e− and e+ are orthogonal to each other. Non-zero
contributions to the T -odd observables 〈O1,2

T 〉 may arise if
terms of the order O(me) are included.

As the next step we discuss the triple product corre-
lations O3,4

T , which means we take into account also the
subsequent decay of one of the charginos. In this case we
have to include the terms Σa, (28)–(33), which depend
on the polarization of the decaying chargino. As can be
seen, the quantity ra

2 of Σa(Zν̃) in (32) is the only term
which contains the triple product correlations (5). How-
ever, its prefactor is again Im(V ∗

i1Vj1O
′L
ij ), which is zero as

shown above. Unlike in the previous case the reason for the
vanishing prefactor is not a direct consequence of CPT .
In fact, applying a CP transformation to ra

2 in the same
manner as in the previous case shows that ra

2 is CP -odd.
It is also T -odd.

Also in the present case there may be non-zero con-
tributions to the T -odd observables in (6) proportional to
me. In general non-zero contributions to the T -odd ob-
servables based on the triple products in (2) and (5) may
also arise by the inclusion of one-loop contributions.

Thus we have to conclude that only the Σab terms con-
tain non-vanishing triple product correlations with trans-
verse beam polarization. In order to measure observables
based on such triple product correlations the decays of
both χ̃±’s must be taken into account [20]. However, in
this case transversely polarized beams are not really nec-
essary, because the same combinations of CP -violating
couplings appear in Σab already in the case of unpolar-
ized beams [21].

Although we have derived our results within the
MSSM, we would like to point out that our conclusions
remain valid if SUSY flavor violating terms are included.
In such a case the Lagrange density in (9) is modified,
however, possible CP -violating phases from the flavor vi-
olating sector drop out in the amplitude for the ν̃ exchange
(in this context see also [22]). This is interesting since in
this case ϕµ may not be restricted due to the electron
electric dipole moment (EDM) [23].

4 Azimuthal asymmetry

As we have seen transverse beam polarization does not
lead to a T -odd (CP -odd) observable if chargino produc-
tion and the decay of only one of the charginos is consid-
ered. In order to measure the CP -violating parameter ϕµ

and the phase of the U(1) gaugino mass parameter ϕM1 in
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Fig. 2a,b. The azimuthal asym-
metry in (46) and the cross sec-
tion σ(e+e− → χ̃+

1 χ̃−
2 ) as a func-

tion of ϕµ. The three lines cor-
respond to values of |µ| (from
the top to the bottom) of |µ| =
(300, 350, 400) GeV. The other pa-
rameters are chosen as M2 =
200 GeV, tan β = 3,

√
s = 800 GeV

and mν̃ = 400 GeV

a b

the reaction e+e− → χ̃+
i χ̃

−
j with transverse beam polar-

ization we propose as observable an azimuthal asymmetry
analogous to that of [7,8]

Aφ =
∫ +(dσ/dφ)dφ− ∫ −(dσ/dφ)dφ

σ
, (44)

where φ is the azimuthal angle of the χ̃±’s. In (44)
∫ ± cor-

responds to an integration over regions where cos 2φ (or
sin 2φ) is positive or negative. The integration in the nu-
merator has the effect of projecting out the terms ∝ PTP̄T
in the formulae for the differential cross section dσ/dφ.
Choosing the beam direction along the z-axis and the
transverse polarization of e− along the x-axis (see Ap-
pendix A), the kinematical factor in (24) can be rewritten
as

r1 = −1
2
q2s sin2 θ(sin 2φ sin ᾱ+ cos 2φ cos ᾱ) , (45)

where ᾱ is the angle between the transverse polarization
vectors of e− and e+, and the other quantities are defined
in the Appendix A. This means for the azimuthal asymme-
try that we have two possible integrations depending on
how the two transverse beam polarizations are orientated
to each other. For ᾱ = π/2 (44) leads to

Aφ =
1
σ

[∫ π/2

0
−

∫ π

π/2
+

∫ 3π/2

π

−
∫ 2π

3π/2

]
dσ
dφ

dφ . (46)

If we had chosen ᾱ = 0, π instead, the integration over
φ would be in steps of π/4. Under favorable conditions
the momentum of the χ̃±’s can be reconstructed. For
such a case we calculate Aφ and σ for e+e− → χ̃+

1 χ̃
−
2

as a function of ϕµ ∈ [0, 2π] and the choices of |µ| =
(300, 350, 400) GeV, fixing the other parameters as M2 =
200 GeV, tanβ = 3, mν̃ = 400 GeV for

√
s = 800 GeV. We

assume that the same degree of transverse polarization is
feasible as for the longitudinal polarization, this means we
take PT = 80% and P̄T = 60%. Figure 2 shows the result.
As can be seen Aφ depends quite strongly on ϕµ. We have
found that this dependence gets much weaker for increas-
ing tanβ, since in the limit tanβ → ∞ the mixing angles
and mass eigenvalues in the chargino sector are indepen-
dent of ϕµ. We have compared the phase dependence of

the cross section with the numerical results of [22] and
found agreement.

We have also studied the reaction e+e− → χ̃+
1 χ̃

−
1 , and

we have found the ϕµ dependence is much weaker. The
reason is that the ϕµ dependence of the denominator and
numerator in (46) almost cancel each other in a large part
of the MSSM parameter space.

The reconstruction of the direction of the χ̃±’s is not
necessary if we consider the subsequent decays χ̃−

j →
ν̃��

−, (3), or χ̃−
j → W−χ̃0

1, (4), and the corresponding az-
imuthal distribution of �− orW−. We define the azimuthal
asymmetry according to (46) with the cross section given
in (41). Note that only the terms (18)–(23) and (28)–(33)
together with the phase space elements (which are defined
in the appendices) depend on the azimuthal angle of �−
or W−.

In the following calculations of Aφ we assume PT =
80% and P̄T = 60%. In Fig. 3 we show the azimuthal asym-
metry, (46), of �− and W− as a function of ϕµ ∈ [0, 2π].
The MSSM parameters are chosen to be |µ| = 400 GeV,
M2 = 200 GeV, tanβ = 3, ϕM1 = 0, mν̃ = 150 GeV and
we will assume the GUT relation |M1| = (5/3) tan2 θW M2
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Fig. 3. The azimuthal asymmetry Aφ, (46), for the reaction
σ(e+e− → χ̃+

1 χ̃−
2 ) at

√
s = 800 GeV, with subsequent decays

χ̃−
2 → ν̃��

− (solid line) and χ̃−
2 → W −χ̃0

1 (dashed line) as
a function of ϕµ. The other parameters are |µ| = 400 GeV,
M2 = 200 GeV, tan β = 3, ϕM1 = 0, mν̃ = 150 GeV
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Fig. 4. a The azimuthal asymme-
try Aφ, (46), for e+e− → χ̃+

1 χ̃−
1 ,

χ̃−
1 → ν̃��

− and b the cross section
for σ(e+e− → χ̃+

1 χ̃−
1 ) as a func-

tion of ϕµ. The three lines corre-
spond to tan β = 3 (solid line), 10
(dashed line), 40 (dotted line), with
|µ| = 300 GeV, M2 = 200 GeV and
mν̃ = 150 GeV. The CM energy is
taken to be

√
s = 500 GeV
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Fig. 5. The azimuthal asymmetry Aφ,
(46), for the reaction e+e− → χ̃+

1 χ̃−
2 ,

χ̃−
2 → χ̃0

1W
− as a function of ϕM1 for√

s = 800 GeV, |µ| = 400 GeV, M2 =
200 GeV, tan β = 3, ϕµ = 0 (thick solid
line), π/2 (dashed line), 3π/4 (dotted
line), π (thin solid line). a shows Aφ

for mν̃ = 150 GeV and b shows Aφ for
mν̃ = 2 TeV
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Fig. 6. The azimuthal asymmetry Aφ, (46), for the reaction
e+e− → χ̃+

1 χ̃−
1 (

√
s = 800 GeV) with subsequent decay χ̃−

1 →
χ̃0

1W
− as a function of ϕM1 . We fix |µ| = 400 GeV, M2 =

400 GeV, tan β = 3, mν̃ = 150 GeV, ϕµ = 0 (thick solid line),
π/2 (dashed line), 3π/4 (dotted line), π (thin solid line)

throughout. We vary ϕµ over the whole range altough it
may in general be restricted due to the EDM measure-
ments. As can be seen in Fig. 3 the CP -conserving values
ϕµ = 0 and ϕµ = π give quite different results for Aφ. The
corresponding cross section is σ(e+e− → χ̃+

1 χ̃
−
2 ) ≈ 29 fb

for ϕµ = 0 and decreases monotonically for increasing ϕµ

until σ(e+e− → χ̃+
1 χ̃

−
2 ) ≈ 1.7 fb for ϕµ = π.

In Fig. 4 we display Aφ and the cross section for the re-
action e+e− → χ̃+

1 χ̃
−
1 , χ̃−

1 → ν̃��
−, as a function of ϕµ for

three values of tanβ = (3, 10, 40), taking |µ| = 300 GeV,
M2 = 200 GeV and mν̃ = 150 GeV. As can be seen the
variations of Aφ (Fig. 4a) and σ(e+e− → χ̃+

1 χ̃
−
1 ) (Fig. 4b)

decrease with increasing tanβ. For low tanβ (= 3) again
the CP -conserving points lead to quite different results
for Aφ. Also the cross section depends in a significant way
on ϕµ, for example, for tanβ = 3 the absolute minimum
of the cross section is reached for CP -violating points
ϕµ ≈ 3

5π,
7
5π (see Fig. 4b).

In Fig. 5 we plot Aφ for the reaction e+e− → χ̃+
1 χ̃

−
2 ,

with χ̃−
2 → W−χ̃0

1. We fix |µ| = 400 GeV, M2 =
200 GeV, tanβ = 3 and vary ϕM1 ∈ [0, 2π] for ϕµ =
(0, π/2, 3π/4, π). Figure 5a shows Aφ for mν̃ = 150 GeV
and Fig. 5b for mν̃ = 2 TeV. For mν̃ = 2 TeV (and assum-
ing that the other sfermion masses of the first two gener-
ations are also heavy) the restriction from the EDMs on
ϕµ is relaxed. One sees that Aφ depends quite strongly on
the CP -violating phases ϕM1 and ϕµ. Note that the ϕM1

dependence is due to the decay amplitude.
In Fig. 6 we plot Aφ for the reaction e+e− → χ̃+

1 χ̃
−
1

with the subsequent decay χ̃−
1 → χ̃0

1W
−. The MSSM

parameters are chosen to be |µ| = 400 GeV, M2 =
400 GeV, tanβ = 3. We vary ϕM1 ∈ [0, 2π] for ϕµ =
(0, π/2, 3π/4, π). As can be seen also in this case the phase
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dependence of the azimuthal asymmetry of the W boson
is very pronounced.

5 Conclusion

We have considered the process e+e− → χ̃+
i χ̃

−
j at a linear

collider with transversely polarized e+ and e− beams. We
have given the analytical expressions for the cross section
of these processes in the spin-density matrix formalism.
We have given arguments why triple product correlations
involving the transverse e± polarizations vanish if at least
one subsequent chargino decay is not observed. Our frame-
work has been the MSSM, but this statement is also valid
for the general MSSM with SUSY flavor violation. We
have proposed and studied azimuthal asymmetries in the
processes e+e− → χ̃+

i χ̃
−
j → χ̃+

i �
−ν̃� (χ̃+

i W
−χ̃0

1). We have
demonstrated that these azimuthal asymmetries are well
suited to investigate the effect of the SUSY CP phases ϕµ

and ϕM1 .
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Appendix

A Momentum and polarization vectors

We define the transverse beam polarization 4-vectors in
(15) and (16) as t− = cosαn1+sinαn2 and t+ = cos ᾱn1+
sin ᾱn2. We choose the z-axis along the beam direction
in the CM system, and n1 = (0, 1, 0, 0), n2 = (0, 0, 1, 0).
Without loss of generality, we take α = 0 throughout. The
4-momenta of the χ̃±’s are given by

pχj = p4 = q(Eχj/q, cosφ sin θ, sinφ sin θ, cos θ) , (47)

with

Eχi,j
=
s+m2

χi,j
−m2

χj,i

2
√
s

,

q =
λ

1
2 (s,m2

χi
,m2

χj
)

2
√
s

, (48)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc). The three
spin basis vectors of χ̃−

j are chosen to be

s1χj
=

(
0,

s2 × s3

|s2 × s3|
)

= (0, cosφ cos θ, sinφ cos θ,− sin θ) ,

s2χj
=

(
0,

pe− × pχj

|pe− × pχj |
)

= (0,− sinφ, cosφ, 0) ,

s3χj
=

1
mχj

(
q,
Eχj

q
pχj

)

=
Eχj

mχj

(q/Eχj
, cosφ sin θ, sinφ sin θ, cos θ) . (49)

The 4-momentum of the lepton in the decay χ̃−
j → ν̃��

−
is given by

p� = |p�|(1, cosφ1 sin θ1, sinφ1 sin θ1, cos θ1) , (50)

where

|p�| =
m2

χj
−m2

ν̃

2(Eχj − q cosϑ)
, (51)

and

cosϑ = sin θ sin θ1 cos(φ− φ1) + cos θ cos θ1 . (52)

The 4-momentum of the W in the decay χ̃−
j → χ̃0

1W
− is

given by

pW = (EW , |pW | cosφ1 sin θ1,
|pW | sinφ1 sin θ1, |pW | cos θ1) . (53)

with

|p±
W | =

[
2|pχj |2(1 − cos2 ϑ) + 2m2

χj

]−1

×
[
(m2

χj
+m2

W −m2
χ0

1
)|pχj | cosϑ

± Eχj

√
λ(m2

χj
,m2

W ,m2
χ0

1
) − 4|pχj |2 m2

W (1 − cos2 ϑ)
]
.

(54)

There are two solutions |p±
W | if |p0

χj
| < |pχj

|, where
|p0

χj
| = λ

1
2 (m2

χj
,m2

W ,m2
χ0

1
)/2mW is the chargino momen-

tum if the W boson is produced at rest. The W decay
angle ϑ is constrained in that case and the maximal angle
ϑmax is given by

sinϑmax =
|p0

χj
|

|pχj |
=

√
s

mW

λ
1
2 (m2

χj
,m2

W ,m2
χ0

1
)

λ
1
2 (s,m2

χi
,m2

χj
)

≤ 1 . (55)

If |p0
χj

| > |pχj |, the decay angle ϑ is not constrained and
there is only the physical solution |p+

W |.

B Phase space

The Lorentz invariant phase space element in (41) is given
by

dLips =
1
2π

dLips(s, pχi , pχj )dsχj dLips(sχj , pν̃ , p�) (56)
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for the subsequent decay χ̃−
j → ν̃��

− (3), and by

dLips =
1
2π

dLips(s, pχi
, pχj

)dsχj

×
∑
±

dLips(sχj
, pχ0

1
, p±

W ) (57)

for the subsequent decay χ̃−
j → χ̃0

1W
− (4). The Lorentz

invariant phase space elements in (56) and (57) read

dLips(s, pχi
, pχj

) =
1

4(2π)2
q√
s

sin θ dθ dφ, (58)

dLips(sχj , pν̃ , p�)

=
1

2(2π)2
|p�|2

m2
χj

−m2
ν̃

sin θ1 dθ1 dφ1 , (59)

dLips(sχj
, pχ0

1
, p±

W ) =
1

4(2π)2

× |p±
W |2

|E±
W |pχj

| cosϑ− Eχj
|p±

W || sin θ1 dθ1 dφ1 . (60)
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